Email: info@ijps.in | Mob: +91-9555269393

Submit Manuscript

Abstract

A Learning Report on the Nash Equilibrium in Game Theory for the Optimisation Method Class

Dr. Rajendra Singh

Associate Professor, HOD Department of Mathematics, Off. Principal MBP.G. College, Dadri, G.B. Nagar

47 - 56
Vol.16, Issue 1, Jul-Dec, 2023
Receiving Date: 2023-07-14
Acceptance Date: 2023-09-17
Publication Date: 2023-09-24
Download PDF

http://doi.org/10.37648/ijps.v16i01.004

Abstract

Nash equilibrium is a key idea in game theory, and this learning report explores it in detail, focusing on how it relates to optimization methods. When it comes to studying the strategic interactions of rational decision-makers, Nash Equilibrium is a crucial idea that stands out in game theory. At its outset, the study lays out the basics of Game Theory and how it may be used in decision-making by explaining the relationship between tactics and outcomes in different contexts. Next, the Nash Equilibrium is discussed, which is a situation where all players' tactics are equally good and no one can change theirs to make it better, considering the plans that other players have selected. An understanding of equilibrium is crucial for describing stable strategic relationships.


Keywords: Learning Report; Nash Equilibrium; Game Theory; Optimisation Method Class


References
  1. Nash, J. (2016). Non-Cooperative Games. Annals of Mathematics, 54(2), 286-295.
  2. Fudenberg, D., & Tirole, J. (2015). Game Theory. MIT Press.
  3. Osborne, M. J., & Rubinstein, A. (2015). A Course in Game Theory. MIT Press.
  4. Myerson, R. B. (2017). Game Theory: Analysis of Conflict. Harvard University Press.
  5. Shoham, Y., & Leyton-Brown, K. (2019). Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press.
  6. Rasmusen, E. (2017). Games and Information: An Introduction to Game Theory. Wiley.
  7. Binmore, K., Osborne, M. J., & Rubinstein, A. (2018). Noncooperative models of bargaining. Econometrica, 60(2), 281-314.
  8. Watson, J. (2015). Strategy: An Introduction to Game Theory. Norton & Company.
  9. Gibbons, R. (2017). A primer in game theory. Harvester Wheatsheaf.
  10. Kreps, D. M. (2019). A Course in Microeconomic Theory. Princeton University Press.
  11. Dixit, A. K., & Skeath, S. (2020). Games of Strategy. Norton & Company.
  12. Bernheim, B. D., & Whinston, M. D. (2016). Common marketing agency and barriers to entry. Journal of Economic Theory, 39(2), 245-268.
  13. Milgrom, P., & Roberts, J. (2020). Bargaining costs, influence costs, and the organization of economic activity. In J. E. Alt & K. A. Shepsle (Eds.), Perspectives on Positive Political Economy (pp. 57-89). Cambridge University Press.
  14. Mertens, J. F., Sorin, S., & Zamir, S. (2015). Repeated games. Journal of Economic Literature, 53(4), 847-889.
  15. Fudenberg, D., & Maskin, E. (2016). The folk theorem in repeated games with discounting or with incomplete information. Econometrica, 54(3), 533-554.
  16. von Neumann, J., & Morgenstern, O. (2017). Theory of Games and Economic Behavior. Princeton University Press.
  17. Shapley, L. S. (2017). A value for n-person games. In H. W. Kuhn & A. W. Tucker (Eds.), Contributions to the Theory of Games (Vol. 2, pp. 307-317). Princeton University Press.
  18. Nash, J. F. (2020). Equilibrium points in n-person games. Proceedings of the National Academy of Sciences, 36(1), 48-49.
  19. Selten, R. (2015). Reexamination of the perfectness concept for equilibrium points in extensive games. International Journal of Game Theory, 4(1), 25-55.
  20. Osborne, M. J., & Pitchik, C. (2017). Bargaining and markets. Academic Press.
  21. Myerson, R. B. (2022). Optimal auction design. Mathematics of Operations Research, 6(1), 58-73.
  22. Kreps, D. M., & Wilson, R. (2021). Sequential equilibria. Econometrica, 50(4), 863-894.
  23. Binmore, K. G., & Vulkan, N. (2020). Applying game theory to automatic price formation. Journal of Economic Dynamics and Control, 20(3-4), 395-423.
  24. Aumann, R. J. (2019). Correlated equilibrium as an expression of Bayesian rationality. Econometrica, 55(1), 1-18.
  25. Harsanyi, J. C., & Selten, R. (2018). A General Theory of Equilibrium Selection in Games. MIT Press.
Back
SUPERJP
BOOSTERJP
GOJEKPOT
WINSTRIKE69
winstrike69 login link alternatif
WINSTRIKE69
ELANG212
ELANG212
ELANG212
GORI77
GORI77
CLAN4D
DINAMIT4D
VIRAL88
GORI77
VIRAL88
viral88 login link alternatif
VIRAL88
SAMSONBET86
PAKONG86
WINSTRIKE69
WINSTRIKE69
WINSTRIKE69
winstrike69 link alternatif
LINABET69
BOOSTERJP
WINSTRIKE69
WINSTRIKE69
WINSTRIKE69
akun pro thailand
Paito SDY Lotto
WINSTRIKE69
SLOT GACOR
VIRAL4D
WINSTRIKE69
BOOSTERJP
VIRAL88
GOJEKPOT
GOJEKPOT
GORI77
VIRAL4D
WINSTRIKE69
viral88
WINSTRIKE69
WINSTRIKE69
CLAN4D
WINSTRIKE69
VIRAL88
viral88
boosterjp
VIRAL88
WINSTRIKE69
boosterjp
Winstrike69
winstrike69
SAMSONBET86
winstrike69
winstreak 69
winstreak69
winstrik69
winstrike 69
winstreak 69 login
winstrike69
linabet69
WINSTRIKE69
GORI77
jagoan86
gori77
winstrike69
winstrike69
winstrike69
winstrike69
winstrike69
gori77
winstrike69
pakong86
winstrike69
winstrike69
linabet69
viral88
jagoan86
winstrike69
gori77
linabet69
LINABET69
gori77
winstrike69
gori77
winstrike69
gojekpot
gojekpot
gojekpot
kaptenjackpot
superjp
pakong86